Orbital Composites licenses AMCM technology
Additive manufacturing compression molding (AMCM), co-developed with ORNL, combines robotic AM and continuous fiber technologies to revolutionize high-volume composites manufacturing.
#continuousfiberAM
Edited by Grace Nehls
Jennifer Granholm, secretary, U.S. Department of Energy (DOE), seeing a live demo of the AMCM technology at ORNL. Photo Credit, all images: Orbital Composites
Orbital Composites (Campbell, Calif., U.S.), developing robotic additive
manufacturing (AM) of continuous fiber-reinforced composites, has announced the exclusive licensing of a new technology co-developed with Oak Ridge National Laboratory (ORNL, Knoxville, Tenn., U.S.). Called additive manufacturing compression molding (AMCM), Orbital says the technology is set to revolutionize the aerospace, mobility and energy industries by offering a new level of speed, efficiency and cost-effectiveness to the composites manufacturing process.
The most demanding applications often require the use of composites, but the cost of manufacturing composite parts has been a barrier to wider adoption. AMCM technology addresses this challenge by significantly reducing the time and cost associated with traditional manufacturing methods, while improving the quality of the final product. This agreement enables Orbital to commercialize AMCM and accelerate decarbonization efforts in aerospace, mobility and energy verticals.
According to Orbital Composites, AMCM combines the benefits of AM with
the precision of compression molding. The technology uses polymer and continuous fiber AM to print directly onto a mold, followed by compression, producing a finished part with high-level accuracy and consistency. AMCM has undergone technology and application validation at ORNL, and has been shown to reduce time and cost associated with traditional manufacturing, while improving the quality of the final product. Through a recent demonstration, ORNL manufactured 100 AMCM parts in five hours, demonstrating <3 minute cycle time per part.
(Left to right): Cole Nielsen, Orbital founder/CTO; Amolak Badesha, Orbital co-founder/CEO; Darrell Stevens, Orbital co-founder/chief engineer); Vipin Kumar, ORNL R&D staff scientist); and Orbital head of automation Anil Kircaliali.
Orbital collaborated with ORNL in building the robotic AM system and incorporated continuous fiber printing into the AMCM process. “We have collaborated with Orbital Composites since 2020, working with their robotic AM platform and are pleased that this partnership has resulted in the licensing of our AMCM process,” Vipin Kumar, R&D staff scientist at ORNL, says. “AMCM combines the fiber control of AM with low porosity of compression molding. This process will enable a high-volume production of next-generation composites that are needed as the automotive industry continues to produce energy efficient vehicles made from lightweight and durable materials.”
Orbital is already well underway in commercializing AMCM for the aerospace and mobility sectors via multiple pilot projects. In a U.S. Air Force funded project, for example, Orbital has demonstrated use of AMCM to manufacture propeller blades for unmanned aerial vehicles (UAVs) in high volume. Similarly, the company has an ongoing project with Oshkosh to demonstrate large-scale AMCM parts, with the aim to cost-effectively manufacture >10,000 parts per year.Other projects are looking into applying AMCM for composite battery boxes.
The project has also received support from the Institute for Advanced Composites Manufacturing Innovation (IACMI, Knoxville, Tenn., U.S.). “The development of the AMCM process is a great example of the power of
partnerships to leverage the IACMI investments to create innovative manufacturing technology in the U.S.,” Chad Duty, IACMI CEO, says.
“Orbital always envisioned combining its innovative robotic continuous fiber AM process with a secondary step for high-volume manufacturing,” Cole Nielsen, founder and CTO of Orbital Composites, adds. “We are especially excited about AMCM since its a zero waste process, and can be scaled to match automotive cycle time requirements.”
In terms of commercialization, Amolak Badesha, co-founder and CEO of Orbital Composites, says the company is already seeing a “strong pull from Tier 1 aerospace and mobility customers.”
RELATED CONTENT
-
Teijin Automotive Technologies to produce pickup box for next-gen Toyota Tundra
One-piece compression molded composite pickup boxes — in addition to the tailgate — will be produced at the company’s Seguin, Texas, facility in three size options.
-
Teijin Automotive Technologies supplies exterior body panels to Lotus Emira
The new premium sports car features exterior doors and panels made from Teijin Automotive Technologies’ compression molded TCA Ultra Lite material.
-
Teledyne CML Composites invests in thermoplastic processing capability
In conjunction with the NCC, the automated processing cell supports high-performance thermoplastic and compression-molded thermoset parts production for the commercial aerospace and defense markets.